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The present investigation is concerned with free vibration analysis of
composite plates in the presence of cutouts undergoing large amplitude
oscillations. The Ritz ®nite element model using a nine-noded C0 continuity,
isoparametric quadrilateral element along with a higher order displacement
theory which accounts for parabolic variation of transverse shear stresses is
used to predict the dynamic behavior. Results have been obtained for
laminated plates with various cutout geometries such as square, rectangle, circle
and ellipse in the large amplitude range. Backbone curves are drawn for
various boundary conditions and aspect ratios of the cutout.
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1. INTRODUCTION

Cutouts are inevitable in structures. Cutouts in structural members like aircraft
wings made up of composite laminates may result in a change in the dynamic
characteristics. Its effects are likely to be quite considerable when the plate is
undergoing large oscillations, speci®cally in space craft or aircraft structures
where thin skins are used. The undesirable vibrations may cause sudden failures
due to resonance in the presence of cutouts. It is, therefore, important to predict
the natural frequencies of these structural members accurately. Woinowsky-
Krieger [1] were probably the ®rst to provide an exact solution using the elliptic
integral method for the non-linear vibration of simply supported uniform
isotropic beams with immovable ends. These isotropic plates undergoing large
amplitude vibrations have been investigated by using the continuum approach
by Wah [2], Chu and Herrman [3], Yamaki [4] and Aalami [5], and the ®nite
element method by Mei [6] and Rao et al. [7]. Chandra and Basavaraju [8, 9]
discuss the large de¯ection vibration of cross ply and angle ply laminated plates
using the perturbation technique. The dynamic analogies of Von-Karman's large
de¯ection equations for laminated plates are used. Raju et al. [10] studied the
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effects of longitudinal or in-plane deformation and inertia on large amplitude
¯exural vibrations of slender beams and thin plates. Kanaka Raju and Hinton
[11] studied the large amplitude vibrations of Mindlin plates using Lagrangian
isoparametric quadrilateral elements with selective integration. Reddy and Chao
[12] presented a ®nite element analysis of the large-de¯ection theory (in Von-
Karman's sense) including transverse shear, for moderately thick laminated
anisotropic composite plates. Linear quadratic rectangular elements with ®ve
degrees of freedom per node are employed to analyse rectangular plates
subjected to various loadings and edge conditions. Reddy [13] studied the effect
of square cutout on the behavior of the laminated plate undergoing large
amplitude vibration. He considered two-layer angle ply and cross ply laminates
for this study. Putcha and Reddy [14] developed a re®ned mixed shear ®nite
element for the non-linear bending analysis of laminated plates. Non-linear
bending analysis of a laminated plate with a higher-order theory and with a
higher-order C1 continuous re®ned ®nite element method for laminated beams
and plates were given by Gajbir et al. [15±17]. Non-linear forced and free
vibration analysis of laminated composite plates with a higher-order theory and
with a higher-order C1 continuous re®ned ®nite element were reported by Gajbir
et al. [18±20]. Chandrasekhara and Tenneti [21] carried out the non-linear static
and dynamic analyses of heated laminated plates using a shear ¯exible ®nite
element approach. Their model accounts for large de¯ections of the plate and
non-uniform distributions of temperature. A nine-noded isoparametric element is
used to obtain the numerical solutions. Bharat et al. [22] discussed an analytical
solution for the large amplitude free-vibration of antisymmetric cross ply
rectangular composite plates having an additional quadratic non-linear term in
the model equation of equilibrium.
It is shown that the classical two-term perturbation solution and further

extension of the same for a ®ve-term solution fail to yield any meaningful results
when the coef®cients of non-linear terms in the modal equations are large.
Hence, an iteration method used to solve the Duf®ng's equation for isotropic
plates is extended to solve the present problem. Shi and Mei [23, 24] developed a
time domain formulation for the large amplitude free vibration of plates. The
procedure of deriving the non-linear equations of motion are discussed and
accurate frequency±maximum de¯ection relations are obtained for the
fundamental and higher non-linear modes. Very few attempts have been made to
predict the large amplitude behavior of laminated plates in the presence of
cutouts. In the present work, a detailed study has been carried out on large
amplitude oscillations of the laminated plates in the presence of various types of
centrally placed cutouts.

2. FORMULATION FOR LARGE AMPLITUDE VIBRATION

The problem is formulated for a plate of thickness h composed of orthotropic
layers of thickness hi with ®bers oriented at angles 2y, as shown in Figure 1.
The higher-order displacement model which gives parabolic variation of shear

stresses across the thickness of the laminate, is given as [25]
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u�x, y, z, t� � u0�x, y, t� � f1�z�cx�x, y, t� � f2�z�yx�x, y, t�,
v�x, y, z, t� � v0�x, y, t� � f1�z�cy�x, y, t� � f2�z�yy�x, y, t�,
w�x, y, z, t� � w0�x, y, t�,

�1�

where

f1�z� � C1zÿ C2z
3, f2�z� � ÿC4z

3, �2; 3�
with C1=1, and C2=C4=4/3h2. u, v and w are the displacements along the x, y

and z directions. u0 , v0 and w0 are displacements of the middle plane of the

laminate and yx , yy , cx and cy are the rotations and slope respectively along the

x and y axes.

From the Green's strain vector, the non-linear strain displacement relation is

given in reference [26] as

ex
ey
gxy
gxz
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8>>>><>>>>:

9>>>>=>>>>;, �4�

where

feg � fegL � fegNL, �5�
in which the strain displacement relations corresponding to the model mentioned

above are
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Figure 1. Laminated plate with co-ordinates and displacements.
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Assuming that the plate is moderately thick and strains are much smaller than
the rotations, one can rewrite non-linear components of equation (4) as

feNLg �

1
2w

2
,x

1
2w

2
,y

w,xw,y

0
0

8>>>><>>>>:

9>>>>=>>>>;: �6�

This corresponds to the well known Von-Karman's relationships for large
displacements.
The stress±strain relations for the kth lamina oriented at an arbitrary angle, y,

with respect to the reference axis are

sx
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txy
txz
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8>>>><>>>>:
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k

, �7�

or

fsig � � �Qij�fejg, �8�
where �Qij's are the transformed stiffness coef®cients.

2.1. ENERGY EQUATIONS

The strain energy of the plate is given by

U � 1

2

�
v

eTi si dV: �9�

The ®ve strain components (plane stress condition) may be represented as ei and
stress components as si and for linear elastic constitutive matrix Cij (Cij= �Qij),
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the constitutive relations are given by

si � Cijej, �10�
The strain energy U can then be written as

U � 1

2

� � �
fegTCijfeg dx dy dz

� 1

2

� � �
feL � eNLgTCijfeL � eNLg dx dy dz

� 1

2

� � �
fCij�eLeL � 2eLeNL � eNLeNL�g dx dy dz: �11�

The strain component ei can be expressed as

ei � LT
i d�

1

2
d tHid, �12�

in which Li is a vector, Hi is a symmetric matrix and d is the vector of

displacement gradients contributing to the strains. Using the procedure adopted

by Rajasekaran and Murrary [27] for isotropic plates and Ganapathi and

Varadan [28] for composite laminates, the strain energy expression (membrane

and bending) with higher order shear deformation theory for large amplitude

free vibration can be written as

UMB � 1

2

� �
dT

1

2
�NA� � 1

6
�NB� � 1

12
�NC�

� �
d dx dy: �13�

Derivative of the displacements which contribute to the strain can be expressed

in vector form as

dT � hu,x u,y v,x v,y w,x w,y cx,x cy,y �cy,x, cx,y� yx,x yy,y �yy,x, yx,y�i
The components of linear ([NA]) and non-linear stiffness matrices ([NB], [NC])

are given in Appendix A.

Strain energy due to shear is expressed as,

US � 1

2

� �
dTs �NS�ds dx dy, �14�

where

�NS� � �A1� �D1�
�D1� �F1�
� �

, �15�

and

�A1ij , D1ij , F1ij� �
�h=2
ÿh=2

�Qij�1, z2, z4� dz for i, j � 4, 5:

The total strain energy for the laminate is therefore
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U � UMB �US: �16�
The kinetic energy of the laminate can be expressed in terms of nodal degrees of
freedom as

T � 1

2

�
A

Xnl
k�1

�zk
zkÿ1

r�k� _�uT _�u dz

 !
dA: �17�

Here �u is the global displacement vector and is given by

f�ug � fu v wgT, �18�
with

f�ug � � �N�fdg, �19�
where

� �N� �
1 0 0 f1�z� 0 f2�z� 0
0 1 0 0 f1�z� 0 f2�z�
0 0 1 0 0 0 0

24 35: �20�

The kinetic energy T is, therefore,

T � 1

2

�
A

Xnl
k�1

�zk
zkÿ1

r�k� _dT� �N�T� �N� _d dz

 !
dA � 1

2

�
A

_dT�m� _d dA, �21�

where [m] is an inertia matrix, given as

�m� �
Xnl
k�1

�zk
zkÿ1

r�k� _jT� �N�T� �N� _j dz �

p 0 0 q1 0 q2 0
0 p 0 0 q1 0 q2
0 0 p 0 0 0 0
q1 0 0 I1 0 I3 0
0 q1 0 0 I1 0 I3
q2 0 0 I3 0 I2 0
0 q2 0 0 I3 0 I2

2666666664

3777777775
, �22�

with

�p, q1, q2, I1, I2, I3� �
Xnl
k�1

�zk
zkÿ1

rk�1, f1�z�, f2�2�, f 21�z�, f 22�z�, � f1�z�, f2�z��
 !

dz:

2.2. FINITE ELEMENT MODEL

In the present work a C 0 nine-noded isoparametric quadrilateral ®nite element
with 7 DOF per node (u, v, w, cx , cy , yx , yy) is employed. Initially the full plate
is discretized using an eight element mesh; only the quarter plate is shown in
Figure 2. Reduced integration is employed to evaluate the transverse shear
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stresses, while full integration is used for bending and stretching. Lagrangian
shape functions are used to interpolate the generalized displacements within an
element. The generalized displacements within the element in terms of nodal
displacements can be expressed as

fdge �
X9
i�1
�Ne

i �fqge: �23�

The displacement gradients can be related to the nodal displacements in the
®nite element modelling as

�dbi � �

Ni,x 0 0 0 0 0 0
Ni,y 0 0 0 0 0 0
0 Ni,x 0 0 0 0 0
0 Ni,y 0 0 0 0 0
0 0 Ni,x 0 0 0 0
0 0 Ni,y 0 0 0 0
0 0 0 C1Ni,x 0 0 0
0 0 0 0 C1Ni,y 0 0
0 0 0 C1Ni,y C1Ni,x 0 0
0 0 0 ÿC2Ni,x 0 ÿC4Ni,x 0
0 0 0 0 ÿC2Ni,y 0 ÿC4Ni,y

0 0 0 ÿC2Ni,y ÿC2Ni,x ÿC4Ni,y ÿC4Ni,x

26666666666666666664

37777777777777777775

fqg, �24�

or

�dMBi
� � �BMB�fqMBg, �25�

�dsi � �
0 0 Ni,x 1 0 0 0
0 0 Ni,y 0 1 0 0
0 0 0 ÿ3 0 ÿ3 0
0 0 0 0 ÿ3 0 ÿ3

2664
3775fqg, �26�

y

xa/2

b/2

Free edge

Figure 2. Quarter plate model with co-ordinates.
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or

�dSi
� � �BS�fqSg: �27�

The element stiffness matrices can now be written as

�Ke� �
�1
ÿ1

�1
ÿ1

BT
MB�NA�BMBJ dc dZ,

�KNL1e � �
�1
ÿ1

�1
ÿ1

BT
MB�NB�BMBJ dc dZ,

�KNL2e � �
�1
ÿ1

�1
ÿ1

BT
MB�NC�BMBJ dc dZ,

�KSe
� �

�1
ÿ1

�1
ÿ1

BT
S �NS�BSJ dc dZ:

�28�

Assembling these element matrices to get global matrices and vectors, the strain

energy becomes

U � 1

2

� �
dT

1

2
�KMB� � 1

6
�KNL1� � 1

12
�KNL2� � 1

2
�Ks�

� �
d dx dy: �29�

The Lagrangian equation of motion for free vibration is given by

d

dt

@T

@ _qi

� �
ÿ @U
@qi
� 0: �30�

Substituting the strain energy and kinetic energy expressions into equation (30),

the governing equation for the non-linear eigenvalue problem is obtained as

�M�f�dg � �KMB� � 1

2
�KNL1� � 1

3
�KNL2� � �Ks�

� �
fdg � 0: �31�

Equation (31) is solved using the solution procedure for the direct iteration

method suggested in references [11, 28±30].

At the point of maximum amplitude

f�dg � ÿo2fdg, f _dg � 0:

Let

�KL� � �KMB� � �KS�, �32�

�KNL� � 1

2
�KNL1� � 1

3
�KNL2�: �33�

The non-linear eigenvalue problem is now reduced to

�KL � KNL�d��fdg ÿ o2�M�fdg � 0: �34�
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The solution of equation (34) is obtained using the direct iteration method. The
steps involved are:
Step 1. The linear eigenvalue problem is solved by setting the amplitude to

zero in equation (34).
Step 2. The mode shape of the desired non-linear mode is normalized with

respect to the given amplitude at the point of maximum de¯ection.
Step 3. Using the normalized mode shape, the non-linear stiffness matrix

[KNL ] is computed.
Step 4. The equations are then solved to obtain new eigenvalues and

corresponding eigenvectors.
Step 5. Steps (2)±(4) are repeated until convergence is attained for {d}max as

well as o2 corresponding to this mode shape.

3. NUMERICAL EXAMPLES AND DISCUSSION

The following material properties are used for computation. These material
properties are in the ®ber direction.

Graphite=epoxy

Material-1: E1/E2=40�0, G12/E2=G13/E2=0�6 G23/E2=0�5, � = 0�25,
r=1500�0 kg/m3.
Material-2: E1/E2 = 15�0, G12/E2 = G13/E2=0�429 G23/E2=0�357, �=0�25,
r=1389�0 kg/m3.
Material-3: E1/E2 = 25�0, G12/E2 = 0�2, G13/E2 = G23/E2=0�2, �=0�25,
r=1500�0 kg/m3.

Boron=epoxy

Material-4: E1/E2=10�0, G12/E2=G13/E2=0�3 G23/E2=0�275, � = 0�23,
r=2000�0 kg/m3.

The boundary conditions considered for the quarter plate are shown in
Figure 2. Unless otherwise explicitly stated, the laminate is simply supported on
all edges.

Simply supported :

u0 � w0 � cy � yy � 0 at x � 0, v0 � cx � yx � 0 at x � a=2,

v0 � w0 � cx � yx � 0 at y � 0, u0 � cy � yy � 0 at y � b=2:

Clamped supported:

u0 � v0 � w0 � cx � cy � yx � yy � 0 at x � 0 and y � 0,

v0 � cx � yx � 0 at x � a=2, u0 � cy � yy � 0 at y � b=2:



452 K. SIVAKUMAR ET AL.

A validation study is carried out ®rst with the proposed model for predicting
the frequencies at large amplitudes. Table 1 gives the comparison of the present
results using quarter plate models (see Figure 2) with the results given in
reference [31] for isotropic square plates of a/h=10 in the presence of square
cutouts for various cutout ratios. From Table 1, it is observed that the present
analysis yields results which are in close agreement with those of reference [31].
The maximum amplitude of vibration is taken as A/h=1�0. Comparisons of the
present results for angle ply and cross ply thin square laminates with the results
given in Reddy [31] are given in Table 2. The computed results are in good
agreement with the results given in reference [31].
Initially, simply supported, isotropic, square, thick and moderately thick

plates are analyzed. The effects of cutout and amplitude on frequency ratio
are given in Table 3. The length and width of the cutout is taken as ca/a=0�2,
ca/cb=2�0. Table 3 shows that the variation of frequency ratio with amplitude
ratio shows a higher non-linearity for square cutout as compared to other
cutouts. Frequency ratios obtained for thick plates are higher than those
obtained for moderately thick plates for the same amplitude ratio. These effects
of cutout size and edge conditions on an isotropic square plate with a square
cutout of a/h=10 and ca/a= 0�2 are shown in Figure 3. It is observed that the

TABLE 1

Validation results on large amplitude vibration of isotropic plate with square cutout
(A/h=1�0, �=0�3, a/h=10�0)

Frequency ratioz������������������������������������������������������������������������}|������������������������������������������������������������������������{
Present Reddy [31]

Quarter plate Quarter platez��������������������������������}|��������������������������������{ z��������������������������������}|��������������������������������{
ca/a ratio a/h=5�0 a/h=10�0 a/h=20�0 a/h=5�0 a/h=10�0 a/h=20�0

0�2 1�5743 1�5270 1�5135 1�5815 1�5121 1�4945
0�5 ± 1�3651 1�3864 1�3653 1�3329 1�3248

±, Indicates that the iteration does not converge.

TABLE 2

Validation results on large amplitude vibration of two-layer angle ply square laminate
with square cutout (ca/a=0�2, a/h=1000�0); material: graphite/epoxy (E1/E2=40�0,

G12/E2=G13/E2=G23/E2=0�5, �12=0�25)
Frequency ratioz��������������������������������������������������������������}|��������������������������������������������������������������{

Present Reddy [31]
Quarter plate Quarter platez�������������������������}|�������������������������{ z�������������������������}|�������������������������{

A/h ratio [0�/90�] [45�/ÿ45�] [0�/90�] [45�/ÿ45�]
0�2 1�0385 1�1509 1�0389 1�1636
0�4 1�1443 1�3233 1�1499 1�3471
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size of the cutout has considerable effect on the non-linearity of the response.

Further, simply supported plates exhibit higher non-linearity than the plate with

clamped edge conditions at all amplitudes and cutout ratios.

Table 4 shows the effect of cutout on large amplitude vibration of four-layer

orthotropic laminates of a/h= 50, with all the edges either simply supported

or clamped. It is observed from the table that the laminate with rectangular

cutout results in higher non-linearity in frequency response. For the same cutout

length the laminate with circular cutout results in higher frequency ratios than

the square cutout for both edge conditions. The effect of cutout on large

amplitude vibration for an anisotropic laminate with ®bers oriented at 45� and
with a/h=50 is presented in Table 5. Here, the laminate with a circular cutout

gives higher frequency ratios at all amplitude ratios. Further, it is observed that

the laminate with a square cutout shows higher hardening effects for both

orthotropic and anisotropic laminates when compared with other cutout shapes.

A comparison of the circular and elliptical cutouts shows that the former gives

higher hardening for both the orientations and edge conditions. This effect of

increase in hardening in the presence of rectangular cutout is not observed in the

case of the isotropic plate.

TABLE 3

Variation of frequency ratio with amplitude ratio for simply supported square isotropic
(ca/a=0�2, ca/cb=2�0)

Frequency ratioz���������������������������������������������������}|���������������������������������������������������{
Amplitude Square Rectangular Circular Elliptical

a/h ratio A/h cutout cutout cutout cutout

0�1 1�0075 1�0070 1�0065 1�0063
0�2 1�0296 1�0277 1�0260 1�0251
0�3 1�0654 1�0613 1�0577 1�0559
0�4 1�1135 1�1063 1�1007 1�0976

5�0 0�5 1�1723 1�1615 1�1538 1�1493
0�6 1�2402 1�2252 1�2159 1�2097
0�7 1�3156 1�2959 1�2856 1�2778
0�8 1�3971 1�3750 1�3618 1�3525
0�9 1�4830 1�4589 1�4436 1�4328
1�0 1�5743 1�5443 1�5300 1�5179
0�1 1�0065 1�0060 1�0057 1�0055
0�2 1�0260 1�0240 1�0229 1�0218
0�3 1�0576 1�0534 1�0509 1�0486
0�4 1�1005 1�0932 1�0891 1�0850

10�0 0�5 1�1534 1�1425 1�1363 1�1303
0�6 1�2150 1�2001 1�1918 1�1834
0�7 1�2843 1�2650 1�2544 1�2436
0�8 1�3600 1�3360 1�3233 1�3099
0�9 1�4412 1�4125 1�3977 1�3815
1�0 1�5270 1�4927 1�4767 1�4578



454 K. SIVAKUMAR ET AL.

1.0

1.6

1.5

1.4

1.3

1.2

1.1

1.00.80.6

Amplitude ratio A/h

0.40.20.0

F
re

q
u

en
cy

 r
a

ti
o

N
L

/
L

Figure 3. Effect of cutout size and edge conditions on an isotropic square plate with square
cutout (a/h=10, ca/a=0�2). }, ca/a=0�2, simply supported; +, ca/a=0�2, clamped supported;
&, ca/a=0�4, simply supported; �, ca/a=0�4, clamped supported.

TABLE 4

Effect of cutout on large amplitude vibration of four-layer orthotropic laminate (0�) using
the quarter plate model (ca/a=0�3, a/h=50�0, ca/cb=2�0, material: 2)

Frequency ratioz���������������������������������������������������}|���������������������������������������������������{
Boundary Amplitude Square Rectangular Circular Elliptical
condition ratio cutout cutout cutout cutout

0�1 1�0080 1�0098 1�0093 1�0091
0�2 1�0318 1�0390 1�0366 1�0363
0�3 1�0698 1�0864 1�0804 1�0804
0�4 1�1201 1�1511 1�1382 1�1387

Simply 0�5 1�1806 1�2315 1�2075 1�2105
supported 0�6 1�2533 1�3315 1�2860 1�2962

0�7 1�3295 1�4360 1�3761 1�3869
0�8 1�4109 1�5499 1�4694 1�4887
0�9 1�4973 1�6672 1�5675 1�5978
1�0 1�5866 1�8156 1�6683 1�6683
0�1 1�0020 1�0024 1�0025 1�0026
0�2 1�0079 1�0097 1�0102 1�0104
0�3 1�0177 1�0217 1�0227 1�0234
0�4 1�0331 1�0384 1�0410 1�0414

Clamped 0�5 1�0516 1�0595 1�0624 1�0642
supported 0�6 1�0741 1�0851 1�0856 1�0910

0�7 1�0937 1�1151 1�1118 1�1212
0�8 1�1176 1�1488 1�1397 1�1560
0�9 1�1417 1�1871 1�1688 1�1924
1�0 1�1670 1�2335 1�1998 1�2290
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Figure 4 shows the effect of cutout shape on the frequency ratio of a two-layer

simply supported antisymmetric angle ply laminate of a/h=50�0. For the same

length of the cutout, the laminate with the square cutout gives the higher

frequency ratio at all amplitude ratios. Figures 5 and 6 show the effects of the

cutout shapes the frequency ratio for antisymmetric and symmetric laminates,

respectively. From the ®gures, not much change is observed in the frequency

ratios in the presence of circular and rectangular cutouts. For symmetric

laminates the non-linearity produced is less when the amplitude is small while at

higher amplitudes the non-linearity is greater. In all three cases the non-linearity

introduced by the elliptical cutout is less.

The effect of size of the cutout on the frequency ratio of a ®ve-layer

antisymmetric angle ply square laminate of a/h = 40 for a square cutout is

shown in Figure 7. From the ®gure it is observed that as ca/a increases up to 0�2
the frequency ratio also increases. For ca/a> 0�2 the frequency ratio decreases

for all amplitude ratios. Figure 8 shows the effect of cutout size on the frequency

ratio for various amplitude ratios for a ®ve-layer antisymmetric square cross ply

laminate of a/h = 40 with a square cutout. For cross ply laminates, although the

cutout ratio for maximum hardening effect is 0�2, there is not much change in

TABLE 5

Effect of cutout on large amplitude vibration of four-layer anisotropic laminate (45�) using
the quarter plate model (ca/a=0�3, a/h=50�0, ca/cb=2�0, material: 2)

Frequency ratioz���������������������������������������������������}|���������������������������������������������������{
Boundary Amplitude Square Rectangular Circular Elliptical
condition ratio cutout cutout cutout cutout

0�1 1�0028 1�0029 1�0033 1�0033
0�2 1�0112 1�0116 1�0134 1�0132
0�3 1�0251 1�0260 1�0300 1�0295
0�4 1�0444 1�0460 1�0530 1�0519

Simply 0�5 1�0687 1�0711 1�0819 1�0802
supported 0�6 1�0978 1�1010 1�1163 1�1138

0�7 1�1296 1�1340 1�1535 1�1509
0�8 1�1664 1�1720 1�1967 1�1933
0�9 1�2066 12136 1�2439 1�2396
1�0 1�2499 1�2584 1�2946 1�2893
0�1 1�0006 1�0005 1�0007 1�0007
0�2 1�0023 1�0023 1�0028 1�0027
0�3 1�0055 1�0052 1�0067 1�0061
0�4 1�0098 1�0094 1�0120 1�0111

Clamped 0�5 1�0153 1�0147 1�0188 1�0172
supported 0�6 1�0220 1�0210 1�0269 1�0247

0�7 1�0285 1�0279 1�0344 1�0327
0�8 1�0367 1�0361 1�0443 1�0422
0�9 1�0458 1�0449 1�0548 1�0528
1�0 1�0552 1�0548 1�0667 1�0643
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the frequency ratio for ca/a=0�2 and ca/a=0�3. When the cutout ratio
increases beyond 0�3 the frequency ratio decreases for all amplitude ratios. Here,
the minimum hardening effect is also observed when the cutout ratio is 0�5.
Figure 9 shows the effect of cutout ratio on the frequency ratio of ®ve-layer

antisymmetric angle ply (y = 45�) square laminates of a/h=40 with rectangular
cutout for various amplitude ratios. When the cutout ratio is 0�2, the frequency
ratio shows a maximum for all amplitude ratios. Above this value of ca/a ratio,
the frequency ratio gradually decreases. The effect of cutout ratio on the
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Figure 4. Variation of frequency ratio with amplitude ratio for a simply supported two-layer
antisymmetric angle ply laminate in the presence of various cutout shapes ([45�/ÿ45�] ca/a=0�2,
ca/cb=2�0, a/h=50�0, material-3). }, Square; +, rectangular; &, circular; �, elliptic.
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Figure 5. Variation of frequency ratio with amplitude ratio for a simply supported four-layer
antisymmetric angle ply laminate in the presence of various cutout shapes ([45�/ÿ45�/45�/ÿ45�]
ca/a=0�2, ca/cb=2�0, a/h=50�0, material-3). }, Square; +, rectangular; &, circular; �,
elliptic.
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frequency ratio for ®ve-layer antisymmetric cross ply square laminates of a/
h=40 for various amplitude ratios with rectangular cutout is shown in Figure
10. The frequency ratio shows a minimum value for a cutout ratio of 0�1 for all
amplitude ratios. The cutout ratio corresponding to the maximum frequency
ratio seems to be 0�4 for all amplitudes in the frequency ratios for the cutout
ratios of 0�2, 0�3, and 0�4.
Variation of frequency ratio with amplitude ratio for a four-layer laminate in

the presence of cutout with an identical area of cross-section is given in Figures
11 to 14. Figure 11 shows the variation of frequency ratio with amplitude ratio
for four-layer symmetric and antisymmetric cross ply and angle ply laminates
with a square cutout. It is observed that all of them produce a hardening type
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Figure 6. Variation of frequency ratio with amplitude ratio for a simply supported four-layer
symmetric angle ply laminate in the presence of various cutout shapes ([45�/ÿ45�/ÿ45�/45�] ca/
a=0�2, ca/cb=2�0, a/h=50�0, material-3). }, Square; +, rectangular; &, circular; �, elliptic.
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Figure 7. Effect of cutout ratio on the frequency ratio on ®ve-layer antisymmetric angle ply
square laminates of a/h=40 with square cutout ([45�/ÿ45�/45�ÿ45�/45�], material-4). },
ca/a =0�1, +, ca/a=0�2; &, ca/a=0�3; �, ca/a=0�4; *, ca/a=0�5.
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non-linearity. At lower amplitude ratios the antisymmetric angle ply laminate

produces higher hardening effect. When the amplitude ratio increases beyond

0�6, the effect of non-linearity in the symmetric angle ply laminate is greater

compared to the antisymmetric angle ply laminate.

Figure 12 shows the variation of frequency ratio with amplitude ratio for four-

layer symmetric and antisymmetric, angle ply and cross ply laminates with

rectangular cutout. Here, the ratio of the length of the cutout to the width of the

cutout ca/cb is taken as 2�0. To keep the area of the cutout the same as the

square cutout discussed above, the length of the cutout is ca/a = 0�56533. As

observed in the previous case on a laminate with square cutout, the
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Figure 8. Effect of cutout ratio on the frequency ratio on ®ve-layer antisymmetric cross ply
square laminates of a/h=40 with square cutout (material-4). }, ca/a =0�1, +, ca/a=0�2; &,
ca/a=0�3; �, ca/a=0�4; *, ca/a=0�5.
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Figure 9. Effect of cutout ratio on the frequency ratio on ®ve-layer antisymmetric angle ply
square laminates of a/h=40 with rectangular cutout ([45�/ÿ45�/45�/ÿ45�/45�], material-4). },
ca/a =0�1, +, ca/a=0�2; &, ca/a=0�3; �, ca/a=0�4; *, ca/a=0�5.
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antisymmetric angle ply laminate produces higher non-linearity than other

orientations discussed here. The softening type non-linearity is observed in the

case of antisymmetric cross ply laminates up to an amplitude ratio of 0�2,
beyond which the hardening type of non-linearity is observed.

The effect of amplitude ratio and antisymmetric and symmetric ply

orientations on the frequency ratio of a four-layer laminate with circular cutout

of the same area of cross-section as discussed above is given in Figure 13. The

hardening type non-linearity is observed for both symmetric and antisymmetric,

cross ply and angle ply laminates. The antisymmetric cross ply laminate

produces higher non-linearity at higher amplitudes. The variation of frequency
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Figure 10. Effect of cutout ratio on the frequency ratio on ®ve-layer antisymmetric
cross ply square laminates of a/h=40 with rectangular cutout (material-4). }, ca/a =0�1,
+, ca/a=0�2; &, ca/a=0�3; �, ca/a=0�4; *, ca/a=0�5.
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Figure 11. Variation of frequency ratio with amplitude ratio for a simply supported four-layer
angle ply laminate with square cutout (ca/a=0�4, a/h=50�0, material-3). }, 45/ÿ45/45/ÿ45; +,
45/ÿ45/ÿ45/45; &, 0/90/0/90; �, 0/90/90/0.
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ratio with amplitude ratio for a four-layer laminate with elliptical cutout of the
same area of cross-section as used in the square cutout, is given in Figure 14.
Here also, a softening type non-linearity is observed for an amplitude ratio up to
0�2 for antisymmetric cross ply laminates. At higher amplitudes the symmetric
cross ply laminates produce higher non-linearity than other layups. From the
above ®gures it is observed that for the same area of cross-section, the laminate
with circular cutout produces higher non-linearity than the laminate with square
cutout for all layups discussed here. A softening type behavior is observed only
with elliptical and rectangular cutouts.

0.9

1.6

1.5

1.4

1.3

1.2

1.1

1.0

1.00.80.6

Amplitude ratio A/h

0.40.20.0

F
re

q
u

en
cy

 r
a

ti
o

N
L

/
L

Figure 12. Variation of frequency ratio with amplitude ratio for a simply supported four-layer
angle ply laminate with rectangular coutout (ca/a=0�565333, ca/cb=2�0, a/h=50�0, material-3).
}, 45/ÿ45/45/ÿ45; +, 45/ÿ45/ÿ45/45; &, 0/90/0/90; �, 0/90/90/0.
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Figure 13. Variation of frequency ratio with amplitude ratio for a simply supported four-layer
angle ply laminate with circular cutout (ca/a=0�451333, a/h=50�0, material-3). }, 45/ÿ45/45/
ÿ45; +, 45/ÿ45/ÿ45/45; &, 0/90/0/90; �, 0/90/90/0.
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The effect of ®ber orientation on the frequency ratio of a three-layer

antisymmetric angle ply laminate with rectangular cutout (ca/a=0�3, ca/cb =

2�0) of a/h=50 is given in Figure 15. It is interesting to note that when the 45�

layer forms the outer layer (layup-1) the non-linearity produced is much higher

than when it forms the inner layer (layup-2). The same trend is observed in the

presence of an elliptical cutout with the same ca/a and ca/cb ratios for both the

layups (see Figure 16). The response curve is identical in the case of layup-2 for

both the cutout shapes while for layup-1 the laminate with rectangular cutout

gives higher non-linearity. In the case of a three-layer cross ply laminate with
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Figure 14. Variation of frequency ratio with amplitude ratio for a simply supported four-layer
angle ply laminate with rectangular cutout (ca/a=0�638, ca/cb=2�0, a/h=50�0, material-3). },
45/ÿ45/45/ÿ45; +, 45/ÿ45/ÿ45/45; &, 0/90/0/90; �, 0/90/90/0.
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Figure 15. Effect of ®ber orientation on the frequency ratio on an antisymmetric angle ply
laminate with rectangular cutout for various amplitude ratios (ca/a=0�2, ca/cb=2�0, a/h=50�0,
material-3). }, [45/ÿ45/45]; +, [ÿ45/45/ÿ45].
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elliptical cutout shown in Figure 17, there is no change in the response whether
0� lamina forms the outer layer or inner layer.
The effects of shape and size of the cutouts on the frequency ratio for various

amplitude ratios of a four-layer symmetric cross-ply laminate with clamped
edges are given in Figures 18 and 19. In Figure 18 variation of frequency ratios
for a cutout ratio of 0�5 is shown. It is observed from this ®gure that the
elliptical cutout has considerable effect on the response as compared to the
square cutout. However, when the cutout ratio is 0�25 (see Figure 19), the
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Figure 16. Effect of ®ber orientation on the frequency ratio on an antisymmetric angle ply
laminate with elliptic cutout for various amplitude ratios (ca/a=0�2, ca/cb=2�0, a/h=50�0,
material-3). }, [45/ÿ45/45]; +, [ÿ45/45/ÿ45].
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Figure 17. Effect of ®ber orientation on the frequency ratio on an antisymmetric cross ply
laminate with elliptic cutout for various amplitude ratios (ca/a=0�2, ca/cb=2�0, a/h=50�0,
material-3). }, [0/90/0]; +, [90/0/90].
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response is more for circular cutouts as compared to rectangular cutouts.
Further, the cutout ratio has a signi®cant effect on the response.

4. CONCLUSION

The present ®nite element model predicts the behavior in the large amplitude
range quite satisfactorily. Presence of cutout and its shape have a signi®cant
effect on the behavior of the laminate in the large amplitude range. It is observed
in general that when the cutout ratio increases up to 0�2 the non-linearity
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Figure 18. Effect of frequency ratio with various amplitude ratio and cutouts for a four-layer
symmetric clamped square laminate (ca/a=0�5, a/h=500, material-1). }, Square; +, rectangu-
lar; &, circular; �, elliptical.
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Figure 19. Effect of frequency ratio with various amplitude ratio and cutouts for a four-layer
symmetric clamped square laminate (ca/a=0�25, a/h=500, material-1). }, Square; +, rectangu-
lar; &, circular; �, elliptical.
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increases and it gradually decreases for further increase in cutout ratio. These
aspects have to be kept in mind while designing composite laminated plates with
cutouts. When the amplitude ratio increases beyond 0�6, the effect of non-
linearity for a symmetric angle ply laminate is greater compared to the
antisymmetric angle ply laminate in the presence of square cutout. It is observed
that for the same cutout area the laminate with circular cutout produces higher
non-linearity than the laminate with square cutout for all layups discussed
above. It is also noted that the antisymmetric cross ply laminates produces a
softening type of behavior in the presence of rectangular and elliptical cutouts.
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APPENDIX A

�NA� �

A11 A16 A16 A12 0 0 B11 B12 B16 E11 E12 E16

A66 A66 A26 0 0 B16 B26 B66 E16 E26 E66

A66 A26 0 0 B16 B26 B66 E16 E26 E66

A22 0 0 B12 B22 B26 E12 E22 E26

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

D11 D12 D16 F11 F12 F16

D22 D26 F21 F22 F26

D66 F16 F26 F66

H11 H12 H16

H22 H26

H66

26666666666666666664

37777777777777777775

,

�NB1� �

0 0 0 0 A11w,x � A16w,y A12w,y � A16w,x 0 0 0 0 0 0
0 0 0 A16w,x � A66w,y A26w,y � A66w,x 0 0 0 0 0 0

0 0 A16w,x � A66w,y A26w,y � A66w,x 0 0 0 0 0 0
0 A12w,x � A26w,y A22w,y � A26w,x 0 0 0 0 0 0

A11u,x � A12u,y A16u,x � A26v,y 0 0 0 0 0 0
�A16�u,y � v,x� �A66�u,y � v,x�

A12u,x � A26v,y 0 0 0 0 0 0
�A26�u,y � v,x�

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

266666666666666666666664

377777777777777777777775

,
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�NB3� �

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
E11yx,x� E16yx,x� 0 0 0 E11w,x� E12w,x� E66w,y�
E12yy,y� E26yy,y� E16w,y E26w,y E16w,x

E16�yx,y � yy,x� E66�yx,y � yy,x�
E22yy,y� 0 0 0 E12w,y� E22w,y� E66w,x�
E12yx,x� E16w,x� E26w,x� E26w,y�

E26�yx,y � yy,x�
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0

0

266666666666666666666666666664

377777777777777777777777777775

,



4
6
8

K
.
S
IV

A
K
U
M
A
R

E
T

A
L
.

�NB2� �

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

B11yx,x� B16yx,x� B11w,x� B12w,x� B66w,y� E11w,x� E12w,x� E66w,y�
B12yy,y� B26yy,y� B16w,y B26w,y B16w,x E16w,y� E26w,y� E16w,x

B16�yx,y � yy,x� B66�yx,y � yy,x�
B22yy,y� B12w,y� B22w,y� B66w,x� E12w,y� E22w,y� E66w,x�
B12yx,x� B16w,x B26w,x B26w,y E16w,x E26w,x E26w,y

B26�yx,y � yy,x�
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0

0

2666666666666666666666666664

3777777777777777777777777775

,
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�NC� �

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

A B 0 0 0 0 0 0
C 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

26666666666666666664

37777777777777777775

,

where

A � 3

2
A11w

2
,x � 3A16w,xw,y � A66w

2
,y,

B � A12w,xw,y � 3

2
A16w

2
,x �

3

2
A26w

2
,y � 2A66w,xw,y,

C � 3

2
A22w

2
,y � 3A26w,xw,y � 1

2
A12w

2
,x � A66w

2
,y:

APPENDIX B: NOTATION

a, b length and width of the plate
ca, cb length and width of the cutout
A/h amplitude ratio
{e}L linear strain vector
{e}NL non-linear strain vector
ep , eb , es membrane, bending and shear strains
e�, e�s higher order bending and shear strains
[NA] linear stiffness matrix
[NB], [NC] non-linear stiffness matrices
[NS] linear stiffness matrix (shear)
UMB membrane and bending strain energy
US shear strain energy
[d] Displacement gradient vector
[ds] Displacement gradient vector corresponding to shear terms
{d} generalized displacement vector
{q} nodal displacement vector
NL non-linear
e subscript for the element
o natural frequency
o1NL fundamental non-linear frequency
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T kinetic energy
[M ] mass matrix
[K ]L linear stiffness matrix
[K ]NL non-linear stiffness matrix
W weight of the plate
mc material code
Pc probability of crossover
Pm probability of mutation
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